ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1659]      



Задача 54319

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике MNLQ углы при вершинах N и L — прямые, а угол при вершине M равен arctg3. Найдите площадь четырёхугольника, если известно, что сторона NL вдвое больше стороны LQ и на 5 больше стороны NM.

Прислать комментарий     Решение


Задача 54439

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) высота AE = 12, а основание AC = 15. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 54483

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3
Классы: 8,9

На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.

Прислать комментарий     Решение


Задача 54702

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

На продолжении боковой стороны AB равнобедренного треугольника ABC за вершину A взята точка D, причём AD = 2AB. Известно, что $ \angle$BAC = 120o. Докажите, что треугольник BDC — равнобедренный.

Прислать комментарий     Решение


Задача 66766

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9,10,11

Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример.
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .