Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 30]
|
|
Сложность: 5- Классы: 7,8,9
|
Для каких n существует такая замкнутая несамопересекающаяся ломаная из n звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
|
|
Сложность: 3 Классы: 5,6,7
|
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия:
1) концами отрезков могут быть только какие-то из отмеченных точек;
2) внутри отрезков не должно быть отмеченных точек;
3) соседние отрезки не должны лежать на одной прямой.
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 30]