Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 598]
|
|
Сложность: 3+ Классы: 9,10
|
Могут ли произведения всех ненулевых цифр двух последовательных натуральных чисел отличаться ровно в 54 раза?
Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.
|
|
Сложность: 3+ Классы: 10,11
|
Все натуральные числа выписали подряд без промежутков на бесконечную ленту: 123456789101112... Затем ленту разрезали на полоски по 7 цифр в каждой.
Докажите, что любое семизначное число
a) встретится хотя бы на одной из полосок;
б) встретится на бесконечном числе полосок.
|
|
Сложность: 3+ Классы: 7,8,9
|
В десятичной записи числа – 36 цифр. Разрешается разбить его на группы по 6 цифр в каждой и как-нибудь переставить эти группы. Известно, что число, полученное при одной из перестановок, в 7 раз больше числа, полученного при другой перестановке. Докажите, что большее из этих чисел делится на 49.
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите наименьшее натуральное число, кратное 99, в десятичной записи которого участвуют только чётные цифры.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 598]