ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 65794

Темы:   [ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.

Прислать комментарий     Решение

Задача 78486

Темы:   [ Четность и нечетность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 11

Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Прислать комментарий     Решение

Задача 78139

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 9,10,11

Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Доказать, что S$ \le$17, 5.
Прислать комментарий     Решение


Задача 52507

Темы:   [ Теорема синусов ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4
Классы: 8,9

Докажите, что для любого треугольника проекция диаметра описанной окружности, перпендикулярного одной стороне треугольника, на прямую, содержащую вторую сторону, равна третьей стороне.

Прислать комментарий     Решение


Задача 55032

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Ортогональная (прямоугольная) проекция ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

В четырехугольнике ABCD острый угол между диагоналями равен $ \alpha$. Через каждую вершину проведена прямая, перпендикулярная диагонали, не содержащей эту вершину. Найдите отношение площади четырёхугольника, ограниченного этими прямыми, к площади четырёхугольника ABCD.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .