Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]
|
|
Сложность: 5- Классы: 10,11
|
Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.
|
|
Сложность: 5- Классы: 10,11
|
Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.
|
|
Сложность: 5 Классы: 10,11
|
Сфера, вписанная в тетраэдр ABCD, касается его граней в точках A', B', C', D'. Отрезки AA' и BB' пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки CC' и DD' тоже пересекаются на вписанной сфере.
|
|
Сложность: 5+ Классы: 10,11
|
На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек,
лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если
три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то
и четвёртая плоскость также его касается.
Около шара объёма
V описана правильная треугольная пирамида.
Каков наименьший возможный объём этой пирамиды?
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]