ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.

Вниз   Решение


Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

ВверхВниз   Решение


Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

ВверхВниз   Решение


Медиана AD и биссектриса CE прямоугольного треугольника ABC  (∠B = 90°)  пересекаются в точке M.
Найдите площадь треугольника ABC, если  CM = 8,  ME = 5.

ВверхВниз   Решение


Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m .

ВверхВниз   Решение


Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

ВверхВниз   Решение


Найдите сумму величин углов MAN, MBN, MCN, MDN и MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
Рис. 1

ВверхВниз   Решение


В пирамиде ABCD длина отрезка BD равна , точка E – середина AB , а F – точка пересечения медиан грани BCD , причём EF=6 . Сфера радиуса 5 касается плоскостей ABD и BCD в точках E и F соответственно. Найдите двугранный угол между гранями ABD и BCD , площадь грани BCD и объём пирамиды ABCD .

ВверхВниз   Решение


Докажите неравенство  (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc  для положительных значений переменных.

ВверхВниз   Решение


Докажите, что при  n > 1  число   11 + 3³ + ... + (2n – 1)2n – 1   делится на 2n, но не делится на 2n+1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



Задача 30767

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7

Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет?

Прислать комментарий     Решение


Задача 88026

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 5,6,7,8

В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?
Прислать комментарий     Решение


Задача 30750

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

В алфавите языка племени УЫУ всего две буквы: У и Ы. Известно, что смысл слова не изменится
  если из слова выкинуть стоящие рядом буквы УЫ и
  при добавлении в любое место слова буквосочетания ЫУ или УУЫЫ.
Можно ли утверждать, что слова УЫЫ и ЫУУ имеют одинаковый смысл?

Прислать комментарий     Решение

Задача 30752

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 88309

Темы:   [ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8

Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .