Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 94]
|
|
Сложность: 4 Классы: 7,8,9
|
На бесконечной шахматной доске расставлены пешки через три поля на
четвёртое, так что они образуют квадратную сетку.
Докажите, что шахматный конь не может обойти все свободные поля, побывав на каждом поле по одному разу.
а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу?
б) А если разрешается сдвигать фишки в любом порядке (не обязательно по очереди)?
|
|
Сложность: 4 Классы: 8,9,10
|
На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?
|
|
Сложность: 4+ Классы: 9,10,11
|
Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1?
На некоторых клетках доски 10×10 сидит по блохе. Раз в минуту блохи одновременно прыгают, причём каждая – в соседнюю клетку (по стороне). Блоха прыгает строго в одном из четырёх направлений, параллельных сторонам доски, сохраняет направление, пока это возможно, иначе меняет его на противоположное. Пес Барбос наблюдал за блохами в течение часа и ни разу не видел, чтобы две
из них сидели на одной клетке. Какое наибольшее количество блох могло прыгать по доске?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 94]