ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол, опирающийся на диаметр
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC известно, что BAC = , AC = b. Вписанная окружность касается сторон AB и BC в точках M и N, биссектриса угла BAC пересекает прямую MN в точке K. Найдите расстояние от точки K до прямой AC. Решение |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 303]
В треугольнике ABC известно, что BAC = , AC = b. Вписанная окружность касается сторон AB и BC в точках M и N, биссектриса угла BAC пересекает прямую MN в точке K. Найдите расстояние от точки K до прямой AC.
Опустим из любой точки P биссектрисы угла A треугольника ABC перпендикуляры PA1, PB1, PC1 на его стороны BC, CA и AB соответственно. Пусть R — точка пересечения прямых PA1 и B1C1. Докажите, что прямая AR делит сторону BC пополам.
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
Два одинаковых правильных треугольника ABC и CDE со стороной 1 расположены так, что имеют только одну общую точку C и угол BCD меньше, чем 60o. Точка K — середина AC, точка L — середина CE, точка M — середина BD. Площадь треугольника KLM равна . Найдите BD.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 303] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|