ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Задано уравнение вида A + B = C, где A, B и C – неотрицательные целые числа, в десятичной записи которых некоторые цифры заменены знаками вопроса (?). Примером такого уравнения является ?2+34=4?. Требуется так подставить вместо знаков вопроса цифры, чтобы это равенство стало верным, либо определить, что это невозможно. Входные данные Заданное уравнение содержится в первой строке входного файла. Длина уравнения не превышает 80 символов. Входной файл не содержит пробелов. Выходные данные В выходной файл требуется вывести верное равенство, полученное из исходного уравнения заменой знаков вопроса цифрами, либо сообщение «решения не существует». Пример входного файла ??2?4+9?=355 Пример выходного файла 00264+91=355 Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 155]
Входные данные Заданное уравнение содержится в первой строке входного файла. Длина уравнения не превышает 80 символов. Входной файл не содержит пробелов. Выходные данные В выходной файл требуется вывести верное равенство, полученное из исходного уравнения заменой знаков вопроса цифрами, либо сообщение «решения не существует». Пример входного файла ??2?4+9?=355 Пример выходного файла 00264+91=355
a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3
Считается, что самолет может вместить не более одного груза, а временем
стоянки самолета в аэропорту следует пренебречь.
Входные данные Входной файл содержит количество вершин графа N (1 ≤ N ≤ 33) и список дуг графа, заданных номерами начальной и конечной вершин. Выходные данные Вывести в выходной файл матрицу N × N, элемент (i, j) которой равен числу различных путей, ведущих из вершины i в вершину j, или -1, если существует бесконечно много таких путей. Пример входного файла 5 1 2 2 4 3 4 4 1 5 3 1 1 Пример выходного файла -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 0 -1 0 -1 -1 1 -1 0
Входные данные В первой строке входного файла записано целое число N – количество слов в списке (1 ≤ N ≤ 1000), а в последующих N строках – сами слова. Каждое из них является последовательностью не более чем из 10 строчных английских букв. Выходные данные Выведите в выходной файл слова в искомом порядке, либо сообщение «NO», если такого порядка не существует. Каждое слово должно быть выведено в отдельную строку выходного файла. Пример входного файла 4 b ab bc bb Пример выходного файла ab bb b bc
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 155] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|