ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 598]      



Задача 64730

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Докажите, что для любого натурального n найдётся натуральное число, десятичная запись квадрата которого начинается n единицами, а заканчивается какой-то комбинацией из n единиц и двоек.

Прислать комментарий     Решение

Задача 78626

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 11 ]
Сложность: 5-
Классы: 8,9,10

Задано такое натуральное число A, что для любого натурального N, делящегося на A, число тоже делится на A. ( – число, состоящее из тех же цифр, что и N, но записанных в обратном порядке; например,   = 7691,  = 54).  Доказать, что A является делителем числа 99.

Прислать комментарий     Решение

Задача 105071

Темы:   [ Десятичная система счисления ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (углы и длины) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Логарифмические неравенства ]
Сложность: 5-
Классы: 10,11

Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.
Прислать комментарий     Решение


Задача 107771

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что для любого  k > 1  найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
(Например,  212 = ...96,  253 = ...992.)

Прислать комментарий     Решение

Задача 109678

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 5-
Классы: 7,8,9

Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?
Прислать комментарий     Решение


Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .