ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 94]      



Задача 35716

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
Сложность: 3+
Классы: 10,11

Можно ли через вершины куба провести 8 параллельных плоскостей так, чтобы расстояния между соседними плоскостями были равны?
Прислать комментарий     Решение


Задача 98307

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Скалярное произведение ]
[ Двоичная система счисления ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

Прислать комментарий     Решение

Задача 107817

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Двоичная система счисления ]
[ Скалярное произведение ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

Прислать комментарий     Решение

Задача 115993

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Расстояние от точки до плоскости ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В кубе АВСDA'B'C'D' с ребром 1 точки T, Р и Q – центры граней AA'B'B, A'B'C'D' и BB'C'C соответственно.
Найдите расстояние от точки Р до плоскости АTQ.

Прислать комментарий     Решение

Задача 98264

Темы:   [ Уравнения в целых числах ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Рациональные и иррациональные числа ]
[ Сферы (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Рубин А.

Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)

 
Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .