ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5? Примечание: [c] - целая часть, {c} - дробная часть числа c. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]
Докажите для каждого натурального числа n > 1 равенство: [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].
Докажите, что при любом натуральном n справедливо неравенство
Примечание: [c] - целая часть, {c} - дробная часть числа c.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|