ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]      



Задача 60847

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Задача 79325

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Признаки делимости на 3 и 9 ]
[ Периодичность и непериодичность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Доказать, что существует такое натуральное число n, большее 1000, что сумма цифр числа 2n больше суммы цифр числа 2n+1.

Прислать комментарий     Решение

Задача 109612

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

Прислать комментарий     Решение

Задача 110134

Темы:   [ Признаки делимости на 11 ]
[ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 8,9,10

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Прислать комментарий     Решение

Задача 78126

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Четность и нечетность ]
[ Квадратный трехчлен (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4+
Классы: 9,10,11

Найти все действительные решения системы  

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .