ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли в наборе из шести чисел  (a, b, c, a²/b, b²/c, c²/a},  где a, b, c – положительные числа, оказаться ровно три различных числа?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 488]      



Задача 109935

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Подсчет двумя способами ]
[ Инварианты ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9,10,11

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Прислать комментарий     Решение

Задача 110136

Темы:   [ Принцип крайнего (прочее) ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9,10

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?

Прислать комментарий     Решение

Задача 110169

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 7,8,9

Может ли в наборе из шести чисел  (a, b, c, a²/b, b²/c, c²/a},  где a, b, c – положительные числа, оказаться ровно три различных числа?

Прислать комментарий     Решение

Задача 115396

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Обход графов ]
[ Подсчет двумя способами ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10,11

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Прислать комментарий     Решение

Задача 116719

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 10,11

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .