ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 303]      



Задача 108946

Темы:   [ Вспомогательная окружность ]
[ Описанные четырехугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике проведены высоты AA1 , BB1 , CC1 . На стороне BC взята точка K , для которой BB1K = BAC , а на стороне AB – точка M , для которой BB1M = ACB ; L – точка пересечения высоты BB1 и отрезка A1C1 . Докажите, что четырёхугольник B1KLM – описанный.
Прислать комментарий     Решение


Задача 110086

Темы:   [ Четырехугольная пирамида ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Сферы (прочее) ]
Сложность: 4
Классы: 10,11

Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.
Прислать комментарий     Решение


Задача 110211

Темы:   [ Ортоцентр и ортотреугольник ]
[ Пересекающиеся окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Симметрия помогает решить задачу ]
[ Признаки подобия ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10

Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

Прислать комментарий     Решение

Задача 115607

Темы:   [ Биссектриса делит дугу пополам ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC и окружность, описанная вокруг него. K — точка пересечения биссектрис внутреннего угла B и внешнего угла C , L — точка пересечения биссектрис внутреннего угла C и внешнего угла B ; M — середина отрезка KL . Докажите, что M — середина дуги BAC .
Прислать комментарий     Решение


Задача 115608

Темы:   [ Биссектриса делит дугу пополам ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

K — точка пересечения биссектрис внутреннего угла B и внешнего угла C треугольника ABC , L — точка пересечения биссектрис внутреннего угла C и внешнего угла B . Докажите, что середина отрезка KL лежит на окружности, описанной около треугольника ABC .
Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .