ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).

Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды? При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.

Вниз   Решение


а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80]      



Задача 77960

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9

99 прямых разбивают плоскость на n частей. Найдите все возможные значения n, меньшие 199.
Прислать комментарий     Решение


Задача 78609

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 8,9,10

В квадрате расположено K точек (K > 2). На какое наименьшее число треугольников нужно разбить квадрат, чтобы в каждом треугольнике находилось не более одной точки?
Прислать комментарий     Решение


Задача 111713

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Против большей стороны лежит больший угол ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?
Прислать комментарий     Решение


Задача 105068

Темы:   [ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Целочисленные решетки (прочее) ]
Сложность: 5-
Классы: 9,10,11

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
Прислать комментарий     Решение


Задача 109579

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Обход графов ]
Сложность: 5
Классы: 9,10,11

Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk,  k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .