ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны четыре точки A , B , C , D . Известно, что любые две окружности, одна из которых проходит через A и B , а другая — через C и D , пересекаются. Докажите, что общие хорды всех таких пар окружностей проходят через одну точку.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 122]      



Задача 53004

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4+
Классы: 8,9

В трапеции ABCD основание AD вдвое больше основания BC, угол A равен 45o, угол D равен 30o. На диагоналях трапеции как на диаметрах построены окружности, пересекающиеся в точках M и N. Хорда MN пересекает основание BC в точке F. Найдите отношение BF : FC.

Прислать комментарий     Решение


Задача 66785

Темы:   [ Инверсия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Даны три окружности. Первая и вторая пересекаются в точках $A_0$ и $A_1$, вторая и третья – в точках $B_0$ и $B_1$, третья и первая – в точках $C_0$ и $C_1$. Пусть $O_{i,j,k}$ – центр описанной окружности треугольника $A_i B_j C_k$. Через все пары точек вида $O_{i,j,k}$ и $O_{1-i,1-j,1-k}$ провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны.
Прислать комментарий     Решение


Задача 66929

Темы:   [ Инверсия (прочее) ]
[ Радикальная ось ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4+
Классы: 9,10,11

Автор: Казаков А.

Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$.
Прислать комментарий     Решение


Задача 67244

Темы:   [ Ортоцентр и ортотреугольник ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Автор: Бахарев Ф.

Точка $H$ – ортоцентр треугольника ${\sf T}$. Стороны треугольника ${\sf T}_1$ проходят через середины сторон треугольника ${\sf T}$ и перпендикулярны соответствующим биссектрисам ${\sf T}$. Вершины треугольника ${\sf T}_2$ являются серединами биссектрис треугольника ${\sf T}$. Докажите, что прямые, соединяющие $H$ с вершинами треугольника ${\sf T}_1$ перпендикулярны сторонам треугольника ${\sf T}_2$.
Прислать комментарий     Решение


Задача 111716

Темы:   [ Пересекающиеся окружности ]
[ Радикальная ось ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9,10

Даны четыре точки A , B , C , D . Известно, что любые две окружности, одна из которых проходит через A и B , а другая — через C и D , пересекаются. Докажите, что общие хорды всех таких пар окружностей проходят через одну точку.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .