Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 45]
|
|
Сложность: 6+ Классы: 10,11
|
При каких натуральных
n для любых чисел
α ,
β ,
γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
sin nα + sin nβ + sin nγ<0?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) степени 2003 с действительными
коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная
последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0,
P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все
числа в последовательности a1, a2, ... различны.
На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз).
Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0, P(a2) = a1, P(a3) = a2, и т.д. Какую степень может иметь P(x)?
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть P(x) – многочлен со старшим коэффициентом 1, а
последовательность целых чисел a1, a2, ... такова, что P(a1)= 0,
P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 45]