ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
  а) 5?
  б) 4?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 64865

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Кноп К.А.

Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°?

Прислать комментарий     Решение

Задача 98279

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Невыпуклые многоугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?

Прислать комментарий     Решение

Задача 79397

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Невыпуклые многоугольники ]
[ Принцип Дирихле (площадь и объем) ]
[ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9,10,11

X и Y — два выпуклых многоугольника, причём многоугольник X содержится внутри Y. Пусть S(X) и S(Y) — площади этих многоугольников, а P(X) и P(Y) — их периметры. Доказать, что $ {\frac{S(X)}{P(X)}}$ < 2 . $ {\frac{S(Y)}{P(Y)}}$.
Прислать комментарий     Решение


Задача 115769

Темы:   [ Общие четырехугольники ]
[ Пятиугольники ]
[ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
  а) 5?
  б) 4?

Прислать комментарий     Решение

Задача 109552

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ Невыпуклые многоугольники ]
[ Произвольные многоугольники ]
Сложность: 6-
Классы: 9,10,11

Внутри выпуклого стоугольника выбрано k точек, 2 k 50 . Докажите, что можно отметить 2k вершин стоугольника так, чтобы все выбранные точки оказались внутри 2k -угольника с отмеченными вершинами.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .