ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 590]
Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2.
Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
Докажите, что если а > 0, b > 0, c > 0 и аb + bc + ca ≥ 12, то a + b + c ≥ 6.
Сравните: sin 3 и sin 3°.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 590] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|