Страница:
<< 20 21 22 23 24
25 26 >> [Всего задач: 126]
|
|
Сложность: 3+ Классы: 7,8,9
|
Несколько камней весят вместе 10 т, при этом каждый из них весит не более 1 т.
а) Докажите, что этот груз можно за один раз увезти на пяти трёхтонках.
б) Приведите пример набора камней, удовлетворяющих условию, для которых четырёх трёхтонок может не хватить, чтобы увезти груз за один раз.
|
|
Сложность: 3+ Классы: 9,10,11
|
Ученик за одну неделю получил 17 оценок (каждая из них – 2, 3, 4 или 5). Среднее арифметическое этих 17 оценок – целое число.
Докажите, что какую-то оценку он получил не более двух раз.
|
|
Сложность: 3+ Классы: 5,6,7
|
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по х очков.
Каково наибольшее возможное значение х? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)
Страница:
<< 20 21 22 23 24
25 26 >> [Всего задач: 126]