ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

x, y > 0.  Через S обозначим наименьшее из чисел x, 1/y,  y + 1/x.  Какое максимальное значение может принимать величина S?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 590]      



Задача 30917

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

Прислать комментарий     Решение

Задача 30919

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7

x, y – числа из отрезка  [0, 1].  Докажите неравенство  

Прислать комментарий     Решение

Задача 30923

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что для любого x выполнено неравенство  x4x³ + 3x² – 2x + 2 ≥ 0.

Прислать комментарий     Решение

Задача 30925

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 6,7

x, y > 0.  Через S обозначим наименьшее из чисел x, 1/y,  y + 1/x.  Какое максимальное значение может принимать величина S?

Прислать комментарий     Решение

Задача 32097

Тема:   [ Системы алгебраических неравенств ]
Сложность: 3
Классы: 7,8,9

Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что  1 – (1 – A)(1 – B)(1 – C) > K.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .