|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2. На стороне AB треугольника ABC взята точка D, а на стороне A1B1 треугольника A1B1C1 взята точка D1. Известно, что треугольники ADC и A1D1C1 равны и отрезки DB и D1B1 равны. Докажите равенство треугольников ABC и A1B1C1. Верно ли, что два треугольника ABC и A'B'C' равны, если AB =A'B', BC = B'C', и ∠A = ∠A'? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60]
Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8.
Верно ли, что два треугольника ABC и A'B'C' равны, если AB =A'B', BC = B'C', и ∠A = ∠A'?
Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.
Равны ли треугольники: а) по двум сторонам и углу; б) по стороне и двум углам?
Даны такие точки A, B, C и D, что отрезки AC и BD пересекаются в точке E. Отрезок AE на 1 см короче, чем отрезок AB, AE = DC, AD = BE,
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 60] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|