ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AB – диаметр окружности, C – некоторая точка плоскости. Прямые AC и BC пересекают окружность в точках M и N соответственно. Прямые MB и NA пересекаютcя в точке K. Найдите угол между прямыми CK и AB.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 303]      



Задача 52760

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

В окружности радиуса R проведена хорда, равная R/2. Через один конец хорды проведена касательная к окружности, а через другой – секущая, параллельная касательной. Найдите расстояние между касательной и секущей.

Прислать комментарий     Решение

Задача 53062

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Пусть AB – диаметр окружности, C – некоторая точка плоскости. Прямые AC и BC пересекают окружность в точках M и N соответственно. Прямые MB и NA пересекаютcя в точке K. Найдите угол между прямыми CK и AB.

Прислать комментарий     Решение

Задача 53250

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1,  PQ = 2.  Найдите все возможные значения, которые может принимать площадь прямоугольника MNPQ, если диаметр окружности равен .

Прислать комментарий     Решение

Задача 53255

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Окружность проходит через вершины A и C треугольника ABC , пересекая сторону AB в точке E и сторону BC в точке F . Угол AEC в 5 раз больше угла BAF , а угол ABC равен 72o . Найдите радиус окружности, если AC = 6 .
Прислать комментарий     Решение


Задача 53909

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

На отрезке AB как на диаметре построена окружность. Докажите, что из всех точек окружности, отличных от A и B, отрезок AB виден под прямым углом.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .