ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высота BL ромба ABCD, опущенная на сторону AD, пересекает диагональ AC в точке E. Найдите AE, если  BL = 8,  AL : LD = 3 : 2.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 112]      



Задача 108985

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанные и описанные окружности ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α .
Прислать комментарий     Решение


Задача 116216

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Перпендикулярные прямые ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9,10

В прямоугольном треугольнике ABC с прямым углом C угол A равен 30°, точка I – центр вписанной окружности ABC, D – точка пересечения отрезка BI с этой окружностью. Докажите, что отрезки AI и CD перпендикулярны.

Прислать комментарий     Решение

Задача 54022

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, проведённая к гипотенузе, делит прямой угол на два неравных угла.
Докажите, что катет, прилежащий к меньшему из них, меньше другого катета.

Прислать комментарий     Решение

Задача 54343

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Ромбы. Признаки и свойства ]
[ Прямоугольные треугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Высота BL ромба ABCD, опущенная на сторону AD, пересекает диагональ AC в точке E. Найдите AE, если  BL = 8,  AL : LD = 3 : 2.

Прислать комментарий     Решение

Задача 65526

Темы:   [ Пирамида (прочее) ]
[ Признаки перпендикулярности ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 10,11

Каждая боковая грань пирамиды является прямоугольным треугольником, в котором прямой угол примыкает к основанию пирамиды. В пирамиде проведена высота. Может ли она лежать внутри пирамиды?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .