ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном треугольнике один из углов равен 30°. Докажите, что в этом треугольнике отрезок перпендикуляра, проведённого к гипотенузе через её середину до пересечения с катетом, втрое меньше большего катета.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180]      



Задача 54502

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике один из углов равен 30°. Докажите, что в этом треугольнике отрезок перпендикуляра, проведённого к гипотенузе через её середину до пересечения с катетом, втрое меньше большего катета.

Прислать комментарий     Решение

Задача 54901

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенства с площадями ]
Сложность: 3
Классы: 8,9

В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Найдите его медиану, проведённую из вершины P.

Прислать комментарий     Решение

Задача 65813

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

Прислать комментарий     Решение

Задача 66711

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10,11

Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
Прислать комментарий     Решение


Задача 86102

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .