Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]
|
|
Сложность: 5 Классы: 10,11
|
К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их
общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A,
вторично пересекает w1 и w2 в точках и L соответственно
(A лежит между K и L ). Прямые KC и LD пересекаются в точке P.
Докажите, что
PB – симедиана треугольника KPL (прямая, симметричная медиане относительно
биссектрисы).
|
|
Сложность: 3+ Классы: 9,10,11
|
В треугольнике ABC AA0 и BB0 – медианы, AA1 и BB1 – высоты. Описанные окружности треугольников CA0B0 и CA1B1 вторично пересекаются в точке Mc. Аналогично определяются точки Ma, Mb. Докажите, что точки Ma, Mb, Mc лежат на одной прямой, а прямые AMa, BMb, CMc параллельны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри трапеции ABCD с основаниями AD и BC отмечены точки M и N так, что AM = CN и BM = DN, а четырёхугольники AMND и BMNC – вписанные. Докажите, что прямая MN параллельна основаниям трапеции.
|
|
Сложность: 4- Классы: 7,8,9
|
Даны две окружности и точка. Построить отрезок, концы
которого лежат на данных окружностях, а середина — в данной
точке.
Две окружности пересекаются в точках K и L. Их центры
расположены по одну сторону от прямой, содержащей отрезок KL. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что AL = 3, BL = 6, а tg∠AKB = – ½. Найдите площадь треугольника AKB.
Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]