ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1435]      



Задача 54305

Темы:   [ Удвоение медианы ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана  BD = AB,  а  ∠DBC = 90°.  Найдите угол ABD.

Прислать комментарий     Решение

Задача 54979

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

Прислать комментарий     Решение

Задача 55090

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

Прислать комментарий     Решение

Задача 55463

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 55597

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .