ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1396]      



Задача 56494

Темы:   [ Отношение площадей подобных треугольников ]
[ Свойства симметрии и центра симметрии ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

Прислать комментарий     Решение

Задача 56752

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.
Прислать комментарий     Решение


Задача 56753

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


Прислать комментарий     Решение

Задача 56754

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 56759

Тема:   [ Площадь треугольника. ]
Сложность: 3
Классы: 9

Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .