ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 373]      



Задача 57413

Тема:   [ Неравенства с медианами ]
Сложность: 5
Классы: 8,9

а) Докажите, что  ma2 + mb2 + mc2 $ \leq$ 27R2/4.
б) Докажите, что  ma + mb + mc $ \leq$ 9R/2.
Прислать комментарий     Решение


Задача 57414

Темы:   [ Неравенства с медианами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 5
Классы: 8,9,10

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).
Прислать комментарий     Решение


Задача 57424

Тема:   [ Неравенства с высотами ]
Сложность: 5
Классы: 8,9

Пусть  a $ \leq$ b $ \leq$ c. Докажите, что тогда  ha + hb + hc $ \leq$ 3b(a2+ac+c2)/(4pR).
Прислать комментарий     Решение


Задача 57426

Тема:   [ Неравенства с биссектрисами ]
Сложность: 5
Классы: 8,9

Докажите, что  ha/la $ \geq$ $ \sqrt{2r/R}$.
Прислать комментарий     Решение


Задача 57427

Тема:   [ Неравенства с биссектрисами ]
Сложность: 5
Классы: 8,9

Докажите, что: а)  la2 + lb2 + lc2 $ \leq$ p2; б)  la + lb + lc $ \leq$ $ \sqrt{3}$p.
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .