ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44). Решение |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 122]
На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y. Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что ∠ACS = ∠BCP.
Из вершины C треугольника ABC проведены касательные CX, CY к окружности, проходящей через середины сторон треугольника.
В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.
С помощью циркуля и линейки проведите через данную точку прямую, на которой две данные окружности высекали бы равные хорды.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 122] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|