ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 14]      



Задача 111520

Темы:   [ Касающиеся окружности ]
[ Вычисление длин дуг ]
Сложность: 3
Классы: 8,9

Две окружности касаются внешним образом. Их радиусы относятся как 3:1, а длина их общей внешней касательной равна 6 . Найдите периметр фигуры, образованной внешними касательными и внешними частями окружностей.
Прислать комментарий     Решение


Задача 52756

Темы:   [ Касающиеся окружности ]
[ Вычисление длин дуг ]
Сложность: 3
Классы: 8,9

Через концы дуги окружности, содержащей 120o, проведены касательные, и в фигуру, ограниченную этими касательными и данной дугой, вписана окружность. Докажите, что её длина равна длине исходной дуги.

Прислать комментарий     Решение


Задача 66580

Темы:   [ Окружности (прочее) ]
[ Метрические соотношения ]
[ Геометрические неравенства ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Мухин Д.Г.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?
Прислать комментарий     Решение


Задача 104108

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вычисление углов ]
[ Применение тригонометрических формул (геометрия) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

Прислать комментарий     Решение

Задача 58359

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Радиусы окружностей ]
[ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 7+
Классы: 9,10,11

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .