ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 61270

Темы:   [ Уравнения высших степеней (прочее) ]
[ Кубические многочлены ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

Прислать комментарий     Решение

Задача 61276

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

Прислать комментарий     Решение

Задача 109581

Темы:   [ Возвратные уравнения ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 8,9,10

Уравнение  x² + ax + b = 0  имеет два различных действительных корня.
Докажите, что уравнение  x4 + ax³ + (b – 2)x² – ax + 1 = 0  имеет четыре различных действительных корня.

Прислать комментарий     Решение

Задача 61266

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 4
Классы: 10,11

Решите уравнение     Сколько действительных корней оно имеет?

Прислать комментарий     Решение

Задача 61275

 [Метод Виета]
Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

Когда  4p³ + 27q² < 0,  уравнение  x³ + px + q = 0  имеет три действительных корня (неприводимый случай кубического уравнения), но для того, чтобы их найти по формуле Кардано, необходимо использование комплексных чисел. Однако можно указать все три корня в явном виде через тригонометрические функции.
  а) Докажите, что при  p < 0  уравнение  x³ + px + q = 0  заменой  x = kt  сводится к уравнению  4t³ – 3t – r = 0   (*)  от переменной t.
  б) Докажите, что при  4p³ + 27q² ≤ 0  решениями уравнения (*) будут числа  t1 = cos,   t2 = cos,   t3 = cos,  где  φ = arccos r.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .