ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что если корни многочлена f(x) = x³ + ax² + bx + c образуют правильный треугольник на комплексной плоскости, то многочлен |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.
Пусть u – точка на единичной окружности z = 1 и u1, u2, u3 – основания перпендикуляров, опущенных из u на стороны a2a3, a1a3, a1a2 вписанного в эту окружностьтреугольника a1a2a3.
Докажите, что если корни многочлена f(x) = x³ + ax² + bx + c образуют правильный треугольник на комплексной плоскости, то многочлен
Докажите, что корни уравнения где a, b, c – попарно различные комплексные числа, лежат внутри треугольника с вершинами в точках a, b, c, или на его сторонах (в случае вырожденного треугольника).
Докажите, что отображение w = является инверсией относительно единичной окружности.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|