ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 78488

Темы:   [ Правильный тетраэдр ]
[ Свойства частей, полученных при разрезаниях ]
[ Гомотетия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 4+
Классы: 10,11

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?
Прислать комментарий     Решение


Задача 64483

Темы:   [ Правильный тетраэдр ]
[ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

Прислать комментарий     Решение

Задача 64518

Темы:   [ Тетраэдр (прочее) ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Центр масс ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 67105

Темы:   [ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Проекция на прямую (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.
Прислать комментарий     Решение


Задача 116284

Темы:   [ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .