|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.
Две стороны треугольника равны 2
Докажите, что любая диагональ четырёхугольника меньше половины его периметра.
Медиана AD и биссектриса CE прямоугольного треугольника
ABC (∠B = 90°) пересекаются в точке M. Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m . Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми). Найдите сумму величин углов MAN, MBN, MCN, MDN и MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
В пирамиде ABCD длина отрезка BD равна Докажите неравенство (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc для положительных значений переменных. Докажите, что при n > 1 число 11 + 3³ + ... + (2n – 1)2n – 1 делится на 2n, но не делится на 2n+1. Высота AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 вдвое больше каждой из сторон основания. Найдите угол между прямыми BD1 и AM , где M – точка пересечения диагоналей грани DCC1D1 . Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D. Расстояния от точки M, лежащей внутри треугольника ABC, до его сторон AC и BC соответственно равны 2 и 4. Найдите расстояние от точки M до прямой AB, если AB = 10, BC = 17, AC = 21.
Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов? Верно ли утверждение, что две прямые, перпендикулярные одной и той же прямой, параллельны? Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 26]
Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.
Пусть f(x) = x² + px + q. При каких p и q выполняются равенства f(p) = f(q) = 0?
Решите систему:
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.
Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Страница: 1 2 3 4 5 6 >> [Всего задач: 26] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|