ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Вниз   Решение


На стороне AB треугольника ABC взята точка D, а на стороне A1B1 треугольника A1B1C1 взята точка D1. Известно, что треугольники ADC и A1D1C1 равны и отрезки DB и D1B1 равны. Докажите равенство треугольников ABC и A1B1C1.

ВверхВниз   Решение


Верно ли, что два треугольника ABC и A'B'C' равны, если  AB =A'B',  BC = B'C', и  ∠A = ∠A'?

ВверхВниз   Решение


В окружность с центром в точке O вписан треугольник EGF, у которого угол $ \angle$EFG -- тупой. Вне окружности находится такая точка L, что $ \angle$LEF = $ \angle$FEG, $ \angle$LGF = $ \angle$FGE. Найдите радиус описанной около треугольника ELG окружности, если площадь треугольника EGO равна 81$ \sqrt{3}$ и $ \angle$OEG = 60o.

ВверхВниз   Решение


В равенстве  (ayb)c = – 64y6  замените a, b и c целыми числами, отличными от 1, так, чтобы получилось тождество.

ВверхВниз   Решение


Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.

ВверхВниз   Решение


Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.

ВверхВниз   Решение


В треугольнике ABC на основании AC взяты точки P и Q так, что  AP < AQ.  Прямые BP и BQ делят медиану AM на три равные части. Известно, что  PQ = 3.
Найдите AC.

ВверхВниз   Решение


Автор: Фольклор

В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63]      



Задача 103816

Темы:   [ Наглядная геометрия в пространстве ]
[ Развертка помогает решить задачу ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

Прислать комментарий     Решение


Задача 103839

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3
Классы: 7,8,9

Из Москвы вылетел вертолёт, который пролетел 300 км на юг, потом 300 км на запад, 300 км на север и 300 км на восток, после чего приземлился. Оказался ли он южнее Москвы, севернее её или на той же широте? Оказался ли он восточнее Москвы, западнее Москвы или на той же долготе?
Прислать комментарий     Решение


Задача 64380

Темы:   [ Наглядная геометрия в пространстве ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 6,7

Автор: Шноль Д.Э.

Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?

Прислать комментарий     Решение

Задача 65449

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.

Прислать комментарий     Решение

Задача 65930

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на параллелограммы ]
[ Развертка помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Легко оклеить поверхность куба шестью ромбами (например, шестью квадратами). А можно ли оклеить поверхность куба (без щелей и наложений) менее чем шестью ромбами (не обязательно одинаковыми)?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .