|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2. На стороне AB треугольника ABC взята точка D, а на стороне A1B1 треугольника A1B1C1 взята точка D1. Известно, что треугольники ADC и A1D1C1 равны и отрезки DB и D1B1 равны. Докажите равенство треугольников ABC и A1B1C1. Верно ли, что два треугольника ABC и A'B'C' равны, если AB =A'B', BC = B'C', и ∠A = ∠A'? В окружность с центром в точке O вписан треугольник EGF, у которого угол В равенстве (ayb)c = – 64y6 замените a, b и c целыми числами, отличными от 1, так, чтобы получилось тождество. Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки. Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.
В треугольнике ABC на основании AC взяты точки P и Q так, что AP < AQ. Прямые BP и BQ делят медиану AM на три равные части. Известно, что PQ = 3. В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63]
Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?
В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Легко оклеить поверхность куба шестью ромбами (например, шестью квадратами). А можно ли оклеить поверхность куба (без щелей и наложений) менее чем шестью ромбами (не обязательно одинаковыми)?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|