|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.) |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 163]
А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)
Какое наименьшее количество цветов необходимо, чтобы покрасить все вершины, стороны и диагонали выпуклого n-угольника, если должны выполняться два условия:
Некоторые клетки белого прямоугольника размером 3×7 произвольным образом покрасили в чёрный цвет. Докажите, что обязательно найдутся четыре клетки одного цвета, центры которых являются вершинами некоторого прямоугольника со сторонами, параллельными сторонам исходного прямоугольника.
Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?
В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 163] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|