|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Квадрат Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите угол между скрещивающимися диагоналями двух граней с общим ребром a . Докажите, что если диагонали четырехугольника ABCD перпендикулярны, то и диагонали любого другого четырехугольника с такими же длинами сторон перпендикулярны. Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. Решите в натуральных числах уравнение: а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие? Даны точки A(-6, 1) и B(4, 6). Найдите координаты точки C, делящей отрезок AB в отношении 2 : 3, считая от точки A. В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
На плоскости дано n выпуклых попарно пересекающихся k-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы
В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|