ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решить предыдущую задачу, если требуется, чтобы число действий (выполняемых операторов присваивания) было порядка log n (то есть не превосходило бы C log n для некоторой константы C; log n — это степень, в которую нужно возвести 2, чтобы получить n).

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 277]      



Задача 76253

Темы:   [ Одномерные массивы ]
[ Задачи с целыми числами ]
Сложность: 3-

Даны два массива x[1]...≤x[k] и  y[1]...≤y[l] и число q. Найти сумму вида x[i] + y[j], наиболее близкую к числу q. (Число действий порядка k+l, дополнительная память — фиксированное число целых переменных, сами массивы менять не разрешается.)
Прислать комментарий     Решение


Задача 66544

Темы:   [ Геометрия на клетчатой бумаге ]
[ Перебор (прочее) ]
Сложность: 3
Классы: 6,7

Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.

Царь ответил так:
— Хорошо, если деревьев каждого вида будет ровно по три и они будут расти в вершинах равных треугольников, выйдет красиво. Но три вида — слишком мало. Если кроме яблонь, груш и слив будут ещё и абрикосы — отпущу брата. Если добавишь пятый вид — черешню — заплачу за работу. Мне ещё миндаль нравится, но шесть треугольников ты тут не сможешь разместить.
— А если смогу?
— Тогда проси чего хочешь!
Иван задумался, не получить ли заодно и полцарства. Подумайте и вы: разместите как можно больше видов деревьев в вершинах равных треугольников. (Равенство треугольников означает равенство всех его сторон и углов, то есть точное совпадение при наложении; треугольники можно поворачивать и переворачивать. В одной яме может расти только одно дерево.)
Прислать комментарий     Решение


Задача 76198

Темы:   [ Первое знакомство с языком программирования ]
[ Задачи с целыми числами ]
Сложность: 3

Решить предыдущую задачу, не используя дополнительных переменных (и предполагая, что значениями целых переменных могут быть произвольные целые числа).
Прислать комментарий     Решение


Задача 76200

Темы:   [ Знакомство с циклами ]
[ Двоичная система счисления ]
Сложность: 3

Решить предыдущую задачу, если требуется, чтобы число действий (выполняемых операторов присваивания) было порядка log n (то есть не превосходило бы C log n для некоторой константы C; log n — это степень, в которую нужно возвести 2, чтобы получить n).
Прислать комментарий     Решение


Задача 98694

 [Сплочённая команда]
Темы:   [ Сортировка ]
[ Двоичный поиск ]
Сложность: 3
Классы: 8,9,10,11

Максимальное время работы на одном тесте: 1 секунда

Максимальный объем используемой памяти: 64 мегабайта

Как показывает опыт, для создания успешной футбольной команды важны не только умения отдельных ее участников, но и сплоченность команды в целом. Характеристикой умения игрока является показатель его профессионализма (ПП). Команда является сплоченной, если ПП каждого из игроков не превосходит суммы ПП любых двух других (в частности, любая команда из одного или двух игроков является сплоченной). Перед тренерским составом молодежной сборной Москвы была поставлена задача сформировать сплоченную сборную с максимальной суммой ПП игроков (ограничений на количество игроков в команде нет).

Ваша задача состоит в том, чтобы помочь сделать правильный выбор из N человек, для каждого из которых известен его ПП.

Формат входных данных

В первой строке входного файла e.in записано целое число N (0 £ N £ 30000). В последующих N строках записано по одному целому числу Pi (0 £ Pi £ 60000), представляющему собой ПП соответствующего игрока.

Формат выходных данных

В первой строке выходного файла e.out через пробел выведите число игроков, отобранных в команду, и их суммарный ПП. В последующих строках выведите номера игроков, вошедших в команду, в произвольном порядке - по одному числу в строке. Нумерация игроков должна соответствовать порядку перечисления игроков во входном файле. Если ответов несколько, выведите любой из них.

Примеры

e.in

e.out

4

1

5

3

3

3 11

2

3

4

5

100

20

20

20

20

2 120

1

2

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .