ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

(Сообщил Ю. В.Матиясевич) Дана функция f : {1...N}$ \to${1...N} Найти период последовательности 1, f(1), f(f(1), ... Количество действий должно быть пропорционально суммарной длине предпериода и периода (эта сумма может быть существенно меньше N)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67172

Темы:   [ Десятичная запись числа ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Прислать комментарий     Решение


Задача 98678

 [Красивые числа]
Тема:   [ Десятичная запись числа ]
Сложность: 4+
Классы: 8,9,10,11

Имя входного файла:

numbers.in

Имя выходного файла:

numbers.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 ? k ? 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно - например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

Во входном файле записаны два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Формат выходных данных

В выходной файл выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходной файл не должен содержать пробелов.

Примеры

numbers.in

numbers.out

69 3

69=33+33+3

6 5

6=5.5+0.5

10 9

10=9.(9)

Прислать комментарий     Решение

Задача 66715

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная запись числа ]
Сложность: 4-
Классы: 8,9,10,11

Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

Прислать комментарий     Решение

Задача 76226

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ Десятичная запись числа ]
Сложность: 2

Даны натуральные числа n и k, n > 1. Напечатать k десятичных знаков числа 1/n. (При наличии двух десятичных разложений выбирается то из них, которое не содержит девятки в периоде.) Программа должна использовать только целые переменные.
Прислать комментарий     Решение


Задача 76228

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ Десятичная запись числа ]
Сложность: 2

(Сообщил Ю. В.Матиясевич) Дана функция f : {1...N}$ \to${1...N} Найти период последовательности 1, f(1), f(f(1), ... Количество действий должно быть пропорционально суммарной длине предпериода и периода (эта сумма может быть существенно меньше N)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .