Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 144]
На двух сторонах AB и BC правильного 2n-угольника взято по
точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в
некоторой точке булавкой. При повороте одного из многоугольников около этой
"оси" на
25
o30
он снова совместился со вторым
многоугольником. Каково наименьшее возможное число сторон таких многоугольников?
Дан равносторонний
ABC. На сторонах
AB и
BC взяты точки
D и
E
так, что
AE =
CD. Найти геометрическое место точек пересечения отрезков
AE и
CD.
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
На биссектрисе
AL треугольника
ABC , в котором
AL=AC ,
выбрана точка
K таким образом, что
CK=BL . Докажите,
что
CKL= ABC .
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 144]