ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]      



Задача 60572

Темы:   [ Числа Фибоначчи ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Пусть первое число Фибоначчи, делящееся на m, есть Fk. Докажите, что  m | Fn  тогда и только тогда, когда  k | n.

Прислать комментарий     Решение

Задача 78121

Темы:   [ Четность и нечетность ]
[ Квадратный трехчлен (прочее) ]
[ Периодичность и непериодичность ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4
Классы: 10,11

Найти все действительные решения системы  

Прислать комментарий     Решение

Задача 78576

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 10,11

На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?

Прислать комментарий     Решение

Задача 109863

Темы:   [ Итерации ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 10,11

Дана функция f(x)= . Найдите f(.. f(f(19))..)95 раз .
Прислать комментарий     Решение


Задача 109924

Темы:   [ Периодические и непериодические дроби ]
[ Принцип Дирихле (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .