Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 598]
Существует ли три ненулевые цифры, с помощью которых можно составить
бесконечное число десятичных записей квадратов различных целых чисел?
|
|
Сложность: 4+ Классы: 8,9,10
|
Найдите все такие целые положительные k, что число
1...12...2-2...2
является квадратом целого числа.
(В первом
слагаемом (уменьшаемом) всего 2000 цифр, из которых на последних местах стоят
цифры "2" в количестве k штук, а остальные цифры - "1";
второе слагаемое
(вычитаемое) состоит из 1001 поряд стоящих цифр "2")
|
|
Сложность: 4+ Классы: 9,10
|
Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?
|
|
Сложность: 5- Классы: 8,9,10
|
Какое наименьшее число гирь необходимо для того,
чтобы иметь возможность взвесить любое число граммов от 1 до 100
на чашечных весах, если гири можно класть на обе
чашки весов?
|
|
Сложность: 5- Классы: 9,10,11
|
Рассматриваются всевозможные
n-значные числа, составленные из цифр 1, 2 и
3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так,
что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются
разные цифры. Доказать, что найдется
n-значное число, в записи которого
участвует лишь одна единица и к которому приписывается единица.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 598]