ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 598]      



Задача 79324

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 9,10

Может ли число n! оканчиваться цифрами 19760...0?

Прислать комментарий     Решение

Задача 79389

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79395

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10

Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79412

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10

Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

Прислать комментарий     Решение

Задача 79432

Темы:   [ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 7,8,9

Может ли квадрат какого-либо натурального числа начинаться с 1983 девяток?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .