ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 501]      



Задача 88198

Темы:   [ Взвешивания ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 6,7,8

Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

Прислать комментарий     Решение

Задача 104048

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно разложить девять орехов по трём карманам? (Карманы разные, а орехи одинаковые.)

Прислать комментарий     Решение

Задача 104073

Темы:   [ Текстовые задачи (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 5,6,7,8

В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

Прислать комментарий     Решение

Задача 30701

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно расставить 12 белых и 12 чёрных шашек на чёрных полях шахматной доски?

Прислать комментарий     Решение

Задача 60346

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево (например, таких как 54345, 17071)?

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .