ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



Задача 78500

Темы:   [ Правильные многоугольники ]
[ Раскладки и разбиения ]
[ Признаки подобия ]
Сложность: 4-
Классы: 9,10

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

Прислать комментарий     Решение

Задача 79399

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9,10

У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует трапеция с вершинами в отмеченных точках.

Прислать комментарий     Решение

Задача 97808

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Анджанс А.

Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2n.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Прислать комментарий     Решение

Задача 97875

Темы:   [ Правильные многоугольники ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9

  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

Прислать комментарий     Решение

Задача 98248

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .