ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Стереометрия
>>
Преобразования пространства
>>
Гомотетия
>>
Гомотетия помогает решить задачу
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7? Решение |
Страница: << 1 2 3 4 [Всего задач: 20]
а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника.
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Страница: << 1 2 3 4 [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|