ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 501]      



Задача 60403

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 9,10


Имеется m белых и n чёрных шаров, причём  m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?

Прислать комментарий     Решение

Задача 60407

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10

Сколькими способами можно составить букет из 17 цветков, если в продаже имеются гвоздики, розы, гладиолусы, ирисы, тюльпаны и васильки?

Прислать комментарий     Решение

Задача 78180

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 10,11

Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что  Pk·3k < 2  для любого k.

Прислать комментарий     Решение

Задача 98651

Темы:   [ Индукция (прочее) ]
[ Раскладки и разбиения ]
[ Перебор случаев ]
[ Деление с остатком ]
Сложность: 3-
Классы: 6,7,8

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

Прислать комментарий     Решение

Задача 116600

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 8,9,10

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что  mn?

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .