ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Задан массив натуральных чисел P[1:n]. Найти минимальное натуральное число, не представимое суммой никаких элементов массива P. Сумма может состоять и из одного слагаемого, но каждый элемент массива может входить в неё только один раз.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 155]      



Задача 76263

Темы:   [ Одномерные массивы ]
[ Сортировка ]
Сложность: 2

Та же задача, но требуется, чтобы сначала шли элементы, меньшие b, затем равные b, а лишь затем большие b.
Прислать комментарий     Решение


Задача 66544

Темы:   [ Геометрия на клетчатой бумаге ]
[ Перебор (прочее) ]
Сложность: 3
Классы: 6,7

Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.

Царь ответил так:
— Хорошо, если деревьев каждого вида будет ровно по три и они будут расти в вершинах равных треугольников, выйдет красиво. Но три вида — слишком мало. Если кроме яблонь, груш и слив будут ещё и абрикосы — отпущу брата. Если добавишь пятый вид — черешню — заплачу за работу. Мне ещё миндаль нравится, но шесть треугольников ты тут не сможешь разместить.
— А если смогу?
— Тогда проси чего хочешь!
Иван задумался, не получить ли заодно и полцарства. Подумайте и вы: разместите как можно больше видов деревьев в вершинах равных треугольников. (Равенство треугольников означает равенство всех его сторон и углов, то есть точное совпадение при наложении; треугольники можно поворачивать и переворачивать. В одной яме может расти только одно дерево.)
Прислать комментарий     Решение


Задача 98694

 [Сплочённая команда]
Темы:   [ Сортировка ]
[ Двоичный поиск ]
Сложность: 3
Классы: 8,9,10,11

Максимальное время работы на одном тесте: 1 секунда

Максимальный объем используемой памяти: 64 мегабайта

Как показывает опыт, для создания успешной футбольной команды важны не только умения отдельных ее участников, но и сплоченность команды в целом. Характеристикой умения игрока является показатель его профессионализма (ПП). Команда является сплоченной, если ПП каждого из игроков не превосходит суммы ПП любых двух других (в частности, любая команда из одного или двух игроков является сплоченной). Перед тренерским составом молодежной сборной Москвы была поставлена задача сформировать сплоченную сборную с максимальной суммой ПП игроков (ограничений на количество игроков в команде нет).

Ваша задача состоит в том, чтобы помочь сделать правильный выбор из N человек, для каждого из которых известен его ПП.

Формат входных данных

В первой строке входного файла e.in записано целое число N (0 £ N £ 30000). В последующих N строках записано по одному целому числу Pi (0 £ Pi £ 60000), представляющему собой ПП соответствующего игрока.

Формат выходных данных

В первой строке выходного файла e.out через пробел выведите число игроков, отобранных в команду, и их суммарный ПП. В последующих строках выведите номера игроков, вошедших в команду, в произвольном порядке - по одному числу в строке. Нумерация игроков должна соответствовать порядку перечисления игроков во входном файле. Если ответов несколько, выведите любой из них.

Примеры

e.in

e.out

4

1

5

3

3

3 11

2

3

4

5

100

20

20

20

20

2 120

1

2

Прислать комментарий     Решение

Задача 98792

 [Не составляемое число]
Темы:   [ Прочие задачи на сообразительность ]
[ Двоичный поиск ]
Сложность: 3

Задан массив натуральных чисел P[1:n]. Найти минимальное натуральное число, не представимое суммой никаких элементов массива P. Сумма может состоять и из одного слагаемого, но каждый элемент массива может входить в неё только один раз.

Прислать комментарий     Решение

Задача 102781

 [Ход конем ]
Темы:   [ Динамическое программирование (прочее) ]
[ Длинная арифметика как инструмент ]
Сложность: 3

Шахматная ассоциация решила оснастить всех своих сотрудников такими телефонными номерами, которые бы набирались на кнопочном телефоне ходом коня. Например, ходом коня набирается телефон 340-49-27. При этом телефонный номер не может начинаться ни с цифры 0, ни с цифры 8.
7 8 9
4 5 6
1 2 3
  0  

Напишите программу, определяющую количество телефонных номеров длины N, набираемых ходом коня.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100).

Выходные данные

Выведите в выходной файл искомое количество телефонных номеров.

Пример входного файла

2

Пример выходного файла

16
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 155]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .